On two conjectures of Sun concerning Apéry-like series

نویسندگان

چکیده

Abstract We prove two conjectural identities of Z.-W. Sun concerning Apéry-like series. One the series is alternating, whereas other one not. Our main strategy to convert and alternating log-sine-cosine log-sinh-cosh integrals, respectively. Then we express all these integrals using single-valued Bloch–Wigner–Ramakrishnan–Wojtkowiak–Zagier polylogarithms. The conjectures then follow from a few rather non-trivial functional equations those polylogarithms in weights 3 4.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Two Conjectures concerning Convex Curves

In this paper we recall two basic conjectures on the developables of convex projective curves, prove one of them and disprove the other in the first nontrivial case of curves in RP . Namely, we show that i) the tangent developable of any convex curve in RP 3 has degree 4 and ii) construct an example of 4 tangent lines to a convex curve in RP 3 such that no real line intersects all four of them....

متن کامل

On two conjectures of Sierpiński concerning the arithmetic functionsσ andφ

Let σ(n) denote the sum of the positive divisors of n. In this note it is shown that for any positive integer k, there is a number m for which the equation σ(x) = m has exactly k solutions, settling a conjecture of Sierpiński. Additionally, it is shown that for every positive even k, there is a number m for which the equation φ(x) = m has exactly k solutions, where φ is Euler’s function. 1991 M...

متن کامل

Two contradictory conjectures concerning Carmichael numbers

Erdős conjectured that there are x1−o(1) Carmichael numbers up to x, whereas Shanks was skeptical as to whether one might even find an x up to which there are more than √ x Carmichael numbers. Alford, Granville and Pomerance showed that there are more than x2/7 Carmichael numbers up to x, and gave arguments which even convinced Shanks (in person-to-person discussions) that Erdős must be correct...

متن کامل

On two conjectures of Maurer concerning basis graphs of matroids

We characterize 2–dimensional complexes associated canonically with basis graphs of matroids as simply connected triangle-square complexes satisfying some local conditions. This proves a version of a (disproved) conjecture by Stephen Maurer (Conjecture 3 of S. Maurer, Matroid basis graphs I, JCTB 14 (1973), 216–240). We also establish Conjecture 1 from the same paper about the redundancy of the...

متن کامل

Notes on Conjectures of Zhi-wei Sun

Conjecture 1 (1988-04-23). Let a0, . . . , an−1, b0, . . . , bn−1 ∈ N. Suppose that ∑n−1 r=0 are 2πir/n = ∑n−1 r=0 bre , and that the least prime divisor p = p(n) of n is greater than |{0 6 r < n : ar 6= 0}| and |{0 6 r < n : br 6= 0}|. Then ar = br for all r ∈ R(n) = {0, 1, . . . , n− 1}. Remark 1. M. Newman [Math. Ann. 1971] showed that if c0, . . . , cn−1 ∈ Q, ∑n−1 r=0 cre 2πir/n = 0 and |{0...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Forum Mathematicum

سال: 2023

ISSN: ['1435-5337', '0933-7741']

DOI: https://doi.org/10.1515/forum-2022-0325